One dimensional fractional frequency Sumudu transform by inverse α−difference operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Fractional Sumudu Transform

We propose a new definition of a fractional-order Sumudu transform for fractional differentiable functions. In the development of the definition we use fractional analysis based on the modified Riemann-Liouville derivative that we name the fractional Sumudu transform. We also established a relationship between fractional Laplace and Sumudu duality with complex inversion formula for fractional S...

متن کامل

On Sumudu Transform Method in Discrete Fractional Calculus

and Applied Analysis 3 2. Preliminaries on Time Scales A time scale T is an arbitrary nonempty closed subset of the real numbers R. The most wellknown examples are T R, T Z, and T q : {qn : n ∈ Z}⋃{0}, where q > 1. The forward and backward jump operators are defined by σ t : inf{s ∈ T : s > t}, ρ t : sup{s ∈ T : s < t}, 2.1 respectively, where inf ∅ : supT and sup ∅ : inf T. A point t ∈ T is sa...

متن کامل

Some Remarks on the Fractional Sumudu Transform and Applications

In this work we study fractional order Sumudu transform. In the development of the definition we use fractional analysis based on the modified Riemann Liouville derivative, then we name the fractional Sumudu transform. We also establish a relationship between fractional Laplace and Sumudu via duality with complex inversion formula for fractional Sumudu transform and apply new definition to solv...

متن کامل

Nonlinear Fractional Jaulent-Miodek and Whitham-Broer-Kaup Equations within Sumudu Transform

and Applied Analysis 3 by considering a general fractional nonlinear nonhomogeneous partial differential equation with the initial condition of the following form: D α t U (x, t) = L (U (x, t)) + N (U (x, t)) + f (x, t) , α > 0, (13) subject to the initial condition D k 0 U (x, 0) = gk, (k = 0, . . . , n − 1) , D n 0 U (x, 0) = 0, n = [α] , (14) where D t denotes without loss of generality the ...

متن کامل

Recursive Algorithms for Realization of One- Dimensional Discrete Sine Transform and Inverse Discrete Sine Transform

In this paper, novel recursive algorithms for realization of one-dimensional discrete sine transform (DST) and inverse discrete sine transform (IDST) of any length are proposed. By using some mathematical techniques, recursive expressions for DST and IDST have been developed. Then, the DST and IDST are implemented by recursive filter structures. A linear systolic architecture for realization of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Mathematica

سال: 2020

ISSN: 2456-8686

DOI: 10.26524/cm73